MOEA Framework 2.12
API Specification

org.moeaframework.algorithm.single
Class EvolutionStrategy

java.lang.Object
  extended by org.moeaframework.algorithm.AbstractAlgorithm
      extended by org.moeaframework.algorithm.AbstractEvolutionaryAlgorithm
          extended by org.moeaframework.algorithm.single.EvolutionStrategy
All Implemented Interfaces:
Algorithm, EvolutionaryAlgorithm

public class EvolutionStrategy
extends AbstractEvolutionaryAlgorithm

Single-objective (mu + lambda) evolution strategy (ES) algorithm. In this implementation, mu and lambda are both equal to the initial population size. For example, with an initial population of size 1, this mimics the classic (1 + 1)-ES algorithm. Can only be used with mutation operators with a single parent.

References:

  1. Ingo Rechenberg. "Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution." Ph.D. thesis, Fromman-Holzboog, 1971.


Field Summary
 
Fields inherited from class org.moeaframework.algorithm.AbstractEvolutionaryAlgorithm
archive, initialization, population
 
Fields inherited from class org.moeaframework.algorithm.AbstractAlgorithm
initialized, numberOfEvaluations, problem, terminated
 
Constructor Summary
EvolutionStrategy(Problem problem, AggregateObjectiveComparator comparator, Initialization initialization, Variation variation)
          Constructs a new instance of the evolution strategy (ES) algorithm.
 
Method Summary
 NondominatedPopulation getResult()
          Returns the current best-known result.
 void iterate()
          Performs one iteration of the algorithm.
 
Methods inherited from class org.moeaframework.algorithm.AbstractEvolutionaryAlgorithm
getArchive, getPopulation, getState, initialize, setState
 
Methods inherited from class org.moeaframework.algorithm.AbstractAlgorithm
evaluate, evaluateAll, evaluateAll, finalize, getNumberOfEvaluations, getProblem, isInitialized, isTerminated, step, terminate
 
Methods inherited from class java.lang.Object
clone, equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 
Methods inherited from interface org.moeaframework.core.Algorithm
evaluate, getNumberOfEvaluations, getProblem, isTerminated, step, terminate
 

Constructor Detail

EvolutionStrategy

public EvolutionStrategy(Problem problem,
                         AggregateObjectiveComparator comparator,
                         Initialization initialization,
                         Variation variation)
Constructs a new instance of the evolution strategy (ES) algorithm.

Parameters:
problem - the problem
comparator - the aggregate objective comparator
initialization - the initialization method
variation - the variation operator
Method Detail

iterate

public void iterate()
Description copied from class: AbstractAlgorithm
Performs one iteration of the algorithm. This method should be overridden by implementations to perform each logical iteration of the algorithm.

Specified by:
iterate in class AbstractAlgorithm

getResult

public NondominatedPopulation getResult()
Description copied from interface: Algorithm
Returns the current best-known result.

Specified by:
getResult in interface Algorithm
Overrides:
getResult in class AbstractEvolutionaryAlgorithm
Returns:
the current best-known result

MOEA Framework 2.12
API Specification

Copyright 2009-2016 MOEA Framework. All rights reserved.
Licensed under the GNU Lesser General Public License.
Return to the MOEA Framework homepage. Visit us on Github!