Package org.moeaframework.problem.DTLZ
Class InvertedDTLZ1
java.lang.Object
org.moeaframework.problem.AbstractProblem
org.moeaframework.problem.DTLZ.DTLZ
org.moeaframework.problem.DTLZ.DTLZ1
org.moeaframework.problem.DTLZ.InvertedDTLZ1
- All Implemented Interfaces:
AutoCloseable
,Problem
,AnalyticalProblem
The Inverted DTLZ1 test problem. This problem was introduced to test reference-point based algorithms since not all
reference points lie on or intersect with the inverted Pareto front.
References:
- Jain, H. and K. Deb. "An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach." IEEE Transactions on Evolutionary Computation, 18(4):602-622, 2014.
-
Field Summary
Fields inherited from class org.moeaframework.problem.AbstractProblem
numberOfConstraints, numberOfObjectives, numberOfVariables
-
Constructor Summary
ConstructorDescriptionInvertedDTLZ1
(int numberOfObjectives) Constructs an Inverted DTLZ1 test problem with the specified number of objectives. -
Method Summary
Methods inherited from class org.moeaframework.problem.DTLZ.DTLZ
g1, g2, generateAt, getName, newSolution
Methods inherited from class org.moeaframework.problem.AbstractProblem
close, getNumberOfConstraints, getNumberOfObjectives, getNumberOfVariables
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface org.moeaframework.core.Problem
close, getName, getNumberOfConstraints, getNumberOfObjectives, getNumberOfVariables, isType, newSolution
-
Constructor Details
-
InvertedDTLZ1
public InvertedDTLZ1(int numberOfObjectives) Constructs an Inverted DTLZ1 test problem with the specified number of objectives.- Parameters:
numberOfObjectives
- the number of objectives for this problem
-
-
Method Details
-
evaluate
Description copied from interface:Problem
Evaluates the solution, updating the solution's objectives in place. Algorithms must explicitly call this method when appropriate to evaluate new solutions or reevaluate modified solutions.
-