Package org.moeaframework.problem.LSMOP
Class LSMOP
java.lang.Object
org.moeaframework.problem.LSMOP.LSMOP
- All Implemented Interfaces:
AutoCloseable
,Problem
- Direct Known Subclasses:
LSMOP1
,LSMOP2
,LSMOP3
,LSMOP4
,LSMOP5
,LSMOP6
,LSMOP7
,LSMOP8
,LSMOP9
,MaF14
,MaF15
Abstract class for defining LSMOP test problems.
-
Field Summary
Modifier and TypeFieldDescriptionstatic final int
The default number of subcomponents in each decision variable group.static final int
The default multiplier for the number of decision variables. -
Constructor Summary
ConstructorDescriptionLSMOP
(int M, int N_k, int N_ns, ShapeFunction g1, ShapeFunction g2, LinkageFunction linkage, CorrelationMatrix correlationMatrix, ParetoFrontGeometry geometry) Constructs a new LSMOP problem instance.LSMOP
(int M, int N_k, ShapeFunction g1, ShapeFunction g2, LinkageFunction linkage, CorrelationMatrix correlationMatrix, ParetoFrontGeometry geometry) Constructs a new LSMOP problem instance. -
Method Summary
Modifier and TypeMethodDescriptionvoid
close()
Closes any underlying resources used by this problem.void
Evaluates the solution, updating the solution's objectives in place.getName()
Returns the user-friendly name for this problem.int
Returns the number of constraints defined by this problem.int
Returns the number of objectives defined by this problem.int
Returns the number of decision variables defined by this problem.Returns a new solution for this problem.
-
Field Details
-
DEFAULT_N_k
public static final int DEFAULT_N_kThe default number of subcomponents in each decision variable group.- See Also:
-
DEFAULT_N_ns
public static final int DEFAULT_N_nsThe default multiplier for the number of decision variables.- See Also:
-
-
Constructor Details
-
LSMOP
public LSMOP(int M, int N_k, ShapeFunction g1, ShapeFunction g2, LinkageFunction linkage, CorrelationMatrix correlationMatrix, ParetoFrontGeometry geometry) Constructs a new LSMOP problem instance.- Parameters:
M
- the number of objectivesN_k
- the number of subcomponents in each decision variable groupg1
- the first shape function (for even indices)g2
- the second shape function (for odd indices)linkage
- the linkage functioncorrelationMatrix
- the correlation matrixgeometry
- the Pareto front geometry
-
LSMOP
public LSMOP(int M, int N_k, int N_ns, ShapeFunction g1, ShapeFunction g2, LinkageFunction linkage, CorrelationMatrix correlationMatrix, ParetoFrontGeometry geometry) Constructs a new LSMOP problem instance.- Parameters:
M
- the number of objectivesN_k
- the number of subcomponents in each decision variable groupN_ns
- the number of decision variables split across the groupsg1
- the first shape function (for even indices)g2
- the second shape function (for odd indices)linkage
- the linkage functioncorrelationMatrix
- the correlation matrixgeometry
- the Pareto front geometry
-
-
Method Details
-
getNumberOfVariables
public int getNumberOfVariables()Description copied from interface:Problem
Returns the number of decision variables defined by this problem.- Specified by:
getNumberOfVariables
in interfaceProblem
- Returns:
- the number of decision variables defined by this problem
-
getNumberOfObjectives
public int getNumberOfObjectives()Description copied from interface:Problem
Returns the number of objectives defined by this problem.- Specified by:
getNumberOfObjectives
in interfaceProblem
- Returns:
- the number of objectives defined by this problem
-
getNumberOfConstraints
public int getNumberOfConstraints()Description copied from interface:Problem
Returns the number of constraints defined by this problem.- Specified by:
getNumberOfConstraints
in interfaceProblem
- Returns:
- the number of constraints defined by this problem
-
close
public void close()Description copied from interface:Problem
Closes any underlying resources used by this problem. Once closed, further invocations of any methods on this problem may throw exceptions.- Specified by:
close
in interfaceAutoCloseable
- Specified by:
close
in interfaceProblem
-
newSolution
Description copied from interface:Problem
Returns a new solution for this problem. Implementations must initialize the variables so that the valid range of values is defined, but typically leave the actual value at a default or undefined state.- Specified by:
newSolution
in interfaceProblem
- Returns:
- a new solution for this problem
-
getName
Description copied from interface:Problem
Returns the user-friendly name for this problem. -
evaluate
Description copied from interface:Problem
Evaluates the solution, updating the solution's objectives in place. Algorithms must explicitly call this method when appropriate to evaluate new solutions or reevaluate modified solutions.
-