Package org.moeaframework.core.indicator
Class MaximumParetoFrontError
java.lang.Object
org.moeaframework.core.indicator.NormalizedIndicator
org.moeaframework.core.indicator.MaximumParetoFrontError
Maximum Pareto front error metric. Represents the maximum distance from solutions in an approximation set to the
nearest solution in the reference set.
-
Field Summary
Fields inherited from class org.moeaframework.core.indicator.NormalizedIndicator
problem -
Constructor Summary
ConstructorsConstructorDescriptionMaximumParetoFrontError(Problem problem, NondominatedPopulation referenceSet) Constructs a maximum Pareto front error evaluator for the specified problem and corresponding reference set.MaximumParetoFrontError(Problem problem, NondominatedPopulation referenceSet, Normalizer normalizer) Constructs a maximum Pareto front error evaluator with a user-provided normalizer. -
Method Summary
Modifier and TypeMethodDescriptiondoubleevaluate(NondominatedPopulation approximationSet) Returns the value of this unary quality indicator given the specified non-dominated population.Methods inherited from class org.moeaframework.core.indicator.NormalizedIndicator
getNormalizedReferenceSet, normalize
-
Constructor Details
-
MaximumParetoFrontError
Constructs a maximum Pareto front error evaluator for the specified problem and corresponding reference set. The default normalization procedure, as specified byDefaultNormalizer, is used.- Parameters:
problem- the problemreferenceSet- the reference set for the problem
-
MaximumParetoFrontError
public MaximumParetoFrontError(Problem problem, NondominatedPopulation referenceSet, Normalizer normalizer) Constructs a maximum Pareto front error evaluator with a user-provided normalizer.- Parameters:
problem- the problemreferenceSet- the reference set for the problemnormalizer- the user-provided normalizer, ornullif the default is used
-
-
Method Details
-
evaluate
Description copied from interface:IndicatorReturns the value of this unary quality indicator given the specified non-dominated population.- Parameters:
approximationSet- the non-dominated population to be evaluated- Returns:
- the value of this quality indicator given the specified non-dominated population
-