Package org.moeaframework.core.indicator
Class NormalizedIndicator
java.lang.Object
org.moeaframework.core.indicator.NormalizedIndicator
- All Implemented Interfaces:
Indicator
- Direct Known Subclasses:
AdditiveEpsilonIndicator
,GenerationalDistance
,GenerationalDistancePlus
,InvertedGenerationalDistance
,InvertedGenerationalDistancePlus
,MaximumParetoFrontError
,NativeHypervolume
,PISAHypervolume
,RIndicator
,WFGNormalizedHypervolume
Abstract class for indicators that require normalized approximation and reference sets.
-
Field Summary
-
Constructor Summary
ConstructorDescriptionNormalizedIndicator
(Problem problem, NondominatedPopulation referenceSet) Constructs a normalized indicator for the specified problem and corresponding reference set.NormalizedIndicator
(Problem problem, NondominatedPopulation referenceSet, Normalizer normalizer) Constructs a normalized indicator for the specified problem, reference set, and normalizer. -
Method Summary
Modifier and TypeMethodDescriptionprotected NondominatedPopulation
Returns the normalized reference set.protected NondominatedPopulation
normalize
(NondominatedPopulation approximationSet) Normalizes the specified approximation set.
-
Field Details
-
problem
The problem.
-
-
Constructor Details
-
NormalizedIndicator
Constructs a normalized indicator for the specified problem and corresponding reference set. SeeDefaultNormalizer
for details on how normalization can be customized.- Parameters:
problem
- the problemreferenceSet
- the reference set for the problem- Throws:
IllegalArgumentException
- if the reference set contains fewer than two solutions
-
NormalizedIndicator
public NormalizedIndicator(Problem problem, NondominatedPopulation referenceSet, Normalizer normalizer) Constructs a normalized indicator for the specified problem, reference set, and normalizer.- Parameters:
problem
- the problemreferenceSet
- the reference set for the problemnormalizer
- a user-provided normalizer, ornull
to use the default
-
-
Method Details
-
normalize
Normalizes the specified approximation set.- Parameters:
approximationSet
- the approximation set to be normalized- Returns:
- a new population representing the normalized approximation set
-
getNormalizedReferenceSet
Returns the normalized reference set.- Returns:
- the normalized reference set
-